Derivation of Fast Multipole Methods

1 Cartesian Taylor Expansions

We will use the following abbreviated expressions for multinomial factorials
n! =n,ln,n!

multinomial powers
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multinomial summations
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227

Ng=ny=n,=0

multinomial gradients
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First, let us decompose the distance vector x;; = (;;, ¥ij, 2;;) into three parts as shown

v —

in Figure 1.

Xij = X;—X;j
= (% — x) + (% — x5) + (x5 — X;)
Xiir + Xirjr + Xjrj
where X;;7 > X;7 + xj;. Then, the Taylor expansion of a function G(x;;) in the
neighborhood of x;/;» can be written as

p
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G(Xij) = Z E(Xii' —+ Xj’j) V( )G(Xi’j’)- (1)

n=0

Using the binomial theorem on (x;7 + x;;)™ we have

= Z n! Z 'k' u’X i kv G<Xi/j/)‘ (2)
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Figure 1: Decomposition of distance vectors into three parts
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M is the multipole expansion and L is the local expansion. Therefore, a potential u at

point x; induced by a charge ¢ at point x;

u(x;) = G(x5)q(x;) (7)

can be factored into the following three expressions

u(x;) = ZEXWL (L2P) (8)

L¥(x) = pZW“*“)G(x@-/j/)M“(xm (M2L) 9)
M) = Sxta(x;) (P2M) (10)
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Figure 2: Decomposition of distance vectors into five parts

We now perform a 5 vector decomposition shown in Figure 2, where the vectors x;»;
and x;;» can be decomposed into

Xj//j = Xj//j/ + X]/]

X = Xt —|— Xtqr

The binomial theorem can be applied to Eq. (10) to yield
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Similarly, Eq. (8) becomes
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To summarize the 6 stages,

u(x;) = G(xi5)q(x;) (P2P)
1 n
M (x;) = —x5i;q(x;) (P2M)
n - 1 n—
k=0
p—k
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By defining the function
1 n
Tn = EV( )G(Xi//j//) (13)

the following recursive relation can be used to determine the derivative terms for the
M2L translation
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where
Il = na+my .
|| = 2%4y*+ 2
n—e = {n,—1n,n.}
n—e = {ngn,—1,n.}
n—e; = {ngnyn,—1}



2 Spherical Harmonics Expansions

Spherical harmonics are the angular portion of the solution to Laplace’s equation in

spherical coordinates. Laplace’s equation
VZu =0,

in spherical coordinates becomes

ig 2@ _|_—1 2 ine@ _|_—1 @—0
2or \' or Zsing o\ o0 r2sin® 0 0¢?

Factoring u(r, 0, ¢) = R(r)Y (0, ¢) gives

rd er—R —l——R 9 sin@a—y —l——R 82_Y_0
r2dr dr r2sin 6 00 00 r2sin®@ 02

Multiplying by r2/(RY) gives
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Separation of variables

1 0 (. 06Y 1 0% N
— [ sinf— —— = =\
Y sin @ 00 o0 Y sin? @ 0¢?
Multiply Eq. (19) by R
d*R dR
2— _ =
r 7 +27’dr AR = 0.

This O.D.E. has a general solution

R = Ar" + Br—" %
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1d <T2dR) + L 9 (sin@a—y> + Loy = 0.
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Without loss of generality we may set A = n(n+1). Next we factor Y (0, ¢) = P(0)E(¢)

in Eq. (20)
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Multiply by P
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Separation of variables

1 0*E )
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Multiply Eq. (25) by E
d*E 9
W +m*E = 0. (27)
This O.D.E. has a general solution
E =e™, (28)

Next we change variables © = cos € in Eq. (26)

d dP m?
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This is the general Legendre equation. When m = 0 (azimuthally symmetric) it be-

comes Legendre’s equation

d

%(1—x2)£+n(n+1)P=0, (30)
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where the solution is the Legendre polynomial
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Fu(x) (& —1)" (31)

The canonical solution to the general Legendre equation (29) is the associated Legendre
polynomial
dm
P(w) = (=1)"(1 = 2*)"? - (Po(). (m > 0) (32)
xm
The general Legendre equation (29) is invariant under a change in sign of m. By sub-
stituting Eq. (31) into Eq. (32) the associated Legendre polynomial can be expressed

in the form N
(_ )m n+m

1 — 2ym/2 %
2nn! (1=27) dzxmtm
Therefore, we may extend the range of m to —n < m < n by finding the proportionality

constants C]" to equate both sides of P, = C]" P, hence

P™(z) = (% —1)" (33)
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From this we obtain
—', (35)

and therefore

pr(x). (36)

Since Y (0, ¢) = P(0)E(¢) is the product of Egs. (28) and (32) it can be written as

B, (x) = (=)™
Y™(0, ) = P™(cos 0)e™?. (37)

for 0 < m <n. For —n < m < n we may use Eq. (36) to obtain

(n - |m|)!P‘m‘(COS Q)eim(ﬁ (38)

Y, (0,¢) = e mi

This definition of spherical harmonics satisfies the property
Y0, 0) = (=1)"Y,™(0,9) (39)

If we redefine the spherical harmonics to be

n —|m|)! :
V(0.6) = ()" (P cos ) (40
it will have conjugate symmetry
Y, (0,0) =Y, ™0, 9) (41)

From Eq. 22 we can add back the radial component u(r, 0, ¢) = R(r)Y (6, ¢). We define

the harmonic outer function O)" and inner function )"

(=1)"™ Y, (0, ¢)

O;n (Tv 67 (b) = AT rn+l (42)
LM (r,0,¢) = i "MATY 0, 6) (43)

where .
Al =AM = Y (44)
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